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An exact expression is obtained for the critical Reynolds number (R*) for loss of stability in a wide class of 

one-dimensional periodic flows. An evolutionary equation is derived in the case of a small subcritically 

(R-R* Q 1) which describes the dynamics of the secondary vortex structure. 

A FLOW which is induced by a mass force which is periodic with respect to one of the coordinates is 
described in the most general form by a stream function 

‘II, = f (Y) (0.1) 

where f is an arbitrary smooth periodic function. The simplest case, when f = cosy, was considered 
in all preceding papers. The question of the stability of such flows was raised by Kolmogorov in 
1959. The problem was investigated in the linear and weakly non-linear approximations in [l-4]. 
The stability of Kolmogorov flow in a non-Newtonian fluid was considered in [5, 61 and the stability 
of the spatial analogues in [7-lo]. 

The aim of this paper is to investigate the stability of a wide class (0.1) of periodic unidirectional 
boundary-free flows of a viscous incompressible fluid. 

1. FORMULATION OF THE PROBLEM. INTRODUCTION OF SLOW VARIABLES 

Consider the stability of a one-dimensional periodic flow (0.1) of a viscous incompressible fluid. 
We will assume that all the variables are dimensionless and take the period of the functionfas being 
equal to 21r. Since the stream function is defined, apart from an arbitrary additive constant, we shall 
assume that 

!z 
(0 =&\ f(Y)&/=0 (1.1) 

0 

As in all of the preceding papers, we shall confine ourselves to two-dimensional perturbations in 
the stability analysis. 

In the case of small subcriticality when the Reynolds number is only slightly different from the 
critical value R, , it is convenient to introduce a small parameter E using the formula 
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R-’ = R,-l (1 - Ed) 

Let us now deform the space-time coordinates 

( 1.2) 

T = e4t, X = EX, Y = y (1.3) 

Arguments in favour of this choice of scale were formulated for the first time [ 1 l-131 as applied to 
the investigation of the stability of convective flows. In the case of a Kolmogorov flow it was shown 
[14] that the use of the scale transformation (1.2) and (1.3) enables one to obtain the results of the 
linear theory of stability [l, 21 together with the main results of the weakly non-linear theory 
comparatively simply. 

In the new variables, the equation for the stream function takes the form 

= RG1 (I- a2) (Qvvvt, + 2a2$,,, + a?,,, - f”“‘) 
(1.4) 

The new variables T, X and Y are used in (1.4) and everywhere subsequently. For convenience, 
these variables are denoted by the previous letters t, x and y, respectively, and the derivative of the 
function f with respect to y is denoted by a prime. 

Since the perturbed flow is naturally assumed to be periodic with respect to y, we integrate Eq. 
(1.4) with respect to the period. As a result we arrive at the integral relationship 

(1.5) 

which is subsequently used to calculate the critical number R, . 

2. DETERMINATION OF THE CRITICAL REYNOLDS NUMBER 

Let us write the solution in the form of an asymptotic expansion 

4 = 40 + Wl + E242 + * * - 

In the zeroth approximation, Eq. (1.4) yields 

7c)0YYYY = i 
,,!I 

(2.1) 

(24 

so that the periodic solution of Eq. (2.2) has the form 

90 = f (Y) + % (x7 0 (2.3) 

The integral relationship (1.5) in the zeroth approximation (+~~y~OXX)X = 0 is automatically 
satisfied by the solution(2.3). 

To a first approximation, we get from relationships (1.4) and (2.3): f))l@ox+ R*-‘QIYyyy = 0. 
Consequently, 

$1 = --R,%.Jr (Y) + @r ($9 t) (2.4) 

The functions fk(y) are frequently encountered in (2.4) and the following formulas. These are 
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defined as the k-fold integrals of the function f (for uniformity in the notation, it is useful to employ 
the understanding that f-fa). In other words, fk is defined recurrently 

&,, = fr (Y), k = 0, 1, 2, . . . P-5) 

In order to remove the non-uniqueness in the definition of (2.5), we require that (1.1) should be 
satisfied for all k, that is, (fk) = 0. 

These conditions uniquely define the periodic function fk. An explicit expression for the fk is 
obtained after expansion in a Fourier series 

fk = .=5_ C, (in)-’ einu 

where the prime in the summation sign indicates the absence of the term with n = 0. Incidentally, it 
is more convenient to use the implicit definition (2.5) in the majority of the following calculations. 

To a first approximation, the integral relationship (1.5) takes the form 

+#ry &z-Jr + <9omr9rrx)x = R,-’ <%MzJ (2.6) 

All of the integrals in (2.6) can be evaluated in an elementary manner: 

<s&op) = 0, <%r,‘P~u> = (fa> &a-, (%> = Q, 

As a result, the asymptotic solvability condition (2.6) yields the required critical Reynolds 
number for the loss of stability of the periodic flow (0.1) 

R, = (f=>-"2 (2.7) 

The critical number R, has only been found analytically in certain isolated problems [ 151. Result 
(2.7) represents the rare case when it is possible to determine R, for an extremely wide class of 
flows. When f = cosy, we have R, = d/2 [l]. It is also possible to express R, in terms of the Fourier 
coefficients of the function 

R, = (2 i 1 C, la)-” 
n=1 

We will now show that, to a second approximation, the asymptotic condition of solvability under 
certain conditions leads to the earlier result (2.7) for the critical number R, . In fact, from (1.4), 
(2.3) and (2.4) we find an equation for $ *, the periodic solution of which has the form 

(2.8) 

where we denote by F(y) the periodic solution of the equation 

F” = fa - (r”) (2.9) 

It is expressed in an elementary manner in terms of the Fourier coefficients of the function F(y): 

(2.10) 

To a second approximation, the integral relationship (1.5) takes the form 
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(Joa + 111 + ~*o>x = R,-” (Wxxm 
Ioz = <4&$2l/>7 111 = ($1r2$1v>7 120 = ~%%-c4ov> 

By using relationships (2.3), (2.4) and (2.8), let us define 

(2. I I ) 

IO, = 0, 11, = 0, ($1) = d)l 

I*0 = whxx <f”> - 3~*a@oxxx&f~f~) (2.12) 

The identities 

tf’fJ = - <fa>, <f’f,> = 0, <f’F) = (fif”} 

are used to calculate these integrals together with the relations (fk) = 0. The above identities follow 
directly from the definition of the functions fk and F on integrating by parts. For exampie, 

<f’O = -<fF’) = <fP”) = (fS> - (fd <f2> = <f#> 

When account is taken of relationships (2.12), we get 

(fi,* <f2> - 1) Qmxcz - 3 tfrP2) R,$&xsrz = 0 (2.13) 

from the asymptotic solvability condition (2.11). 
Relationship (2.7) for the critical number R, again follows from (2.13). However, in the general 

case when (fif*>#O, this is insufficient to satisfy the condition of soIvability (2.13). This fact 
indicates that the solution procedure which has been adopted [the form of the asymptotic expansion 
(2.1) and so on] is apparently invalid in this case. We shall therefore subsequently confine ourselves 
to arbitrary smooth periodic functionsf(y) which satisfy the supplementary condition 

tr,f”> = 0 (2.14) 

All the following results turn out to be self-consistent when relation (2.4) is satisfied. In 
particular, Kolmogorov flows occur in the class of such flows. 

1 . , DERIVATION OF THE EVOLUTIONARY EQUATION IN THE FUNCTION G+,(x, f) 

In order to obtain the evolutionary equation we turn to the third approximation. In this case, by 
taking account of the results for the preceding approximation, which were obtained earlier, after 
some fairly lengthy calculations we get the equation for the stream function 

Riahill, = --F-h, + @,2x) f”’ + =‘o,f’ + Rd-h+@u,tf” - 

- (f)c&2sy~~ + R*Q,,, [fIfW’ - (f’J21 + 

+ JWWkm (3ff’ - 2faf’” - fxf”) + 

+ &2%wc.x [fl (f’Y - $f’ + (2F - + fia) f”‘l (3.1) 

This equation can be integrated. However, the final result is very long and, apart from the 
functions fk(’ ), contains numerous new functions of the type of F(y). The explicit form of the 
soiution is not required in order to obtain the evolutionary equation in (a,{~, t> and is therefore not 
given here. 
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To a third approximation, the integral relationship (1.5) takes the form 

(3.2) 

Using (2.3), (2.4) and (2.8), we determine some of the integrals in (3.2) 

<$,z-$0) = %-alI + + V <fC> @orx, <%&o=> = 0 

<%v$P> = --R*‘@,orxr (%X? <f?> + 2@, <f#>) 

<41&azr> = %‘@0* [(r-I&$‘,, + Q)oxra) <fla> + 

+ Q)ox521. <f$“> 

In order to evaluate these integrals, we use the supplementary identities 

<fF> = <fP,$> 9 <flF’> = -w> 9 <ff12> = 0 

together with the identities which have been previously obtained. 
When account is taken of the equality 

<~OY%aL.C> = (f’%>rz 

it remains to evaluate the integral of +J’ over the period. By integrating by parts, we reduce this 
integral to the form 

<f’93> = <f.&agJrmvv> (3.3) 

and use Eq. (3.1) for the fourth derivative of +s. As a result, we determine the integral (3.3) after 
some extremely long but straightforward calculations. 

On collecting the results together we note the absence of terms with a’2 and a1 from the final 
expression (3.2). In fact, terms of the first type constitute the expression (R*2(f2) - l)@z_X which 
is equal to zero in view of (2.7) while terms of the second type constitute the expression 
(fif2>@ lxxxxx which is also equal to zero by virtue of relation (2.14). 

After a double integration with respect to X, we arrive at the required evolutionary equation 

a = 4 <fj2>, B = -2 <ila> 

Y = <f& (f’)2> - <f3f2f’> + (f3Y (m - + fi”)) + + (fa) (fi9 

Repeated integration by parts is carried out in order to reduce the moment y to a more compact 
form. Here, together with the definitions (2.5) and (2.9), we shall constantly make use of the 
periodicity of all of the functions F, fk (k = 0, 1, 2, . . .). The non-trivial components of the moment 
y turn out to be: 

<f3L2r”> = 2 <Ml (f’)Y - 5 <f2f12> -$ <f2$> 

(fsW’> = - (f2F> + + <f2f12> - +- <f#> - + (f”> (f12> 

<fsf”f’> = - $ <fzf% <f2F> = - <(F’)2> 
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SO that we finally obtain 

Y = 2 ((p’)“> + 11/2 <Pf,“> - 3 (f2f3> - g/2 (f2> U12> 

In the case of Kolmogorov flow, we have 

f = cos y, f, = sin y, f2 = -cos y, F = -‘I8 cos 2y 

and hence from (3.4) and (3.5) we obtain 

a = 0, J3 = -1, y = 3/d. 

(3.5) 

in complete accord with the results in [14]. 
AS a more complex example, let us consider the situation when the function f consists of two 

harmonics 

f = Cle’” + C2e2ig + (c.c) (3.6) 

where we denote by (c.c.) the complex-conjugate terms. We determine the functions fk(y ) from 
(3.6) and use relationship (2.10) in the case of the expression F(y) 

F = -2C*,C2eiu - %C12e2’” - l/qC1C2e3’Y - 

- 1/laC22e4i* + (CL.) (3.7) 

When account is taken of (3.6) and (3.7), we find the moments 

CL = -18Re (clT,*), /3 = -4 1 Cl I2 - 1 c2 1” 

Y = 12 I Cl I4 + 3 I C, I” + 16'/4 I Cl I2 I c2 I2 (3.8) 

We will also give an expression for the supplementary condition of consistency with (2.14) 

(ff2) = 3 Im (C12C2*) = 0 (3.9) 

If follows from (3.9) that the complex coefficients Cr and C, depend on the three real parameters 
a, b and 8: 

Cl = &e, C, = bea@ 

so that the function f, which consists of two harmonics and satisfies the consistency condition (2.14) 
is written in the form 

f = 2 (a cos y + b cos 2y) (3.10) 

when account is taken of the arbitrariness in the choice of the origin from where the variables are 
measured. 

We note that y>O and p<O in the case of the flow (3.10), as can be seen from (3.8). Only the 

term e@aX @oXXX may turn out to be zero in Eq. (3.4). It is clear from (3.8) that this is only possible 
when a = 0 or b = 0, that is, essentially in the case of Kolmogorov flow. 
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